
Maki ng Discrete and the I nterpenetration of Code and Language

Let us now shift from interpreting code through the worldviews of speech
and writing to the inverse approach of interpreting speech and writing
through the worldview of code. An operation scarcely mentioned by Saus­
sure and Derrida but central to code is digitization, which I interpret here as
the act of making something discrete rather than continuous, that is, digital
rather than analog. The act of making discrete extends through multiple
levels of scale, from the physical process of forming bit patterns up through
a complex hierarchy in which programs are written to compile other pro­
grams. Understanding the practices through which this hierarchy is con­
structed, as well as the empowerments and limitations the hierarchy entails,
is an important step in theorizing code in relation to speech and writing.

Let me make a claim that, in the interest of space, I will assert rather than
substantiate: the world as we sense it on a human scale is basically analog.
Over millennia, humans have developed biological modifications and tech­
nological prostheses to impose digitization on these analog processes, from
the physiological evolution needed to produce speech to sophisticated dig­
ital computers. From a continuous stream of breath, speech introduces the
discreteness of phonemes; writing carries digitization farther by adding ar­
tifacts to this physiological process, developing inscription technologies that
represent phonemes with alphabetic letters. At every point, analog processes
interpenetrate and cooperate with these digitizations. Experienced readers,
for example, perceive words not as individual letters but as patterns per­
ceived in a single glance. The synergy between the analog and digital capital­
izes on the strengths distinctive to each. As we have seen, digitization allows
fine-tuned error control and depth of coding, whereas analog processes tie
in with highly evolved human capabilities of pattern processing. In addi­
tion, the analog function of morphological resemblance, that is, similarity
of form, is the principal and indeed (so far as I know) the only way to convey
information from one instantiated entity to a differently instantiated entity.

How do practices of making discrete work in the digital computer? We
have already heard about the formation of the bit stream from changing
voltages channeled through logic gates, a process that utilizes morpholog­
ical resemblance. From the bit pattern bytes are formed, usually with each
byte composed of eight bits-seven bits to represent the ASCII code, and an
empty one that can be assigned special significance. At each of these stages,
the technology can embody features that were once useful but have since
become obsolete. For example, the ASCII code contains a seven-bit pat­
tern corresponding to a bell ringing on a teletype. Although teletypes are no
longer in use, the bit pattern remains because retrofitting the ASCII code to

56 M A K I N G : L A N G U A G E A N D C O D E

delete it would require far more labor than would be justified by the benefit.
To some extent, then, the technology functions like a rock strata, with the
lower layers bearing the fossilized marks of technologies now extinct.

In the progression from speech to writing to code, each successor regime
introduces features not present in its predecessors. In Of Grammato[ogy,

Derrida repeatedly refers to the space between words in alphabetic writ­
ing to demonstrate his point that writing cannot be adequately understood
simply as the transcription of speech patterns (39, passim) . Writing, he ar­
gues, exceeds speech and thus cannot be encapsulated within this predeces­
sor regime; "writing is at the same time more exterior to speech, not being
its 'image' or its 'symbol; and more interior to speech, which is already in
itself a writing" (46) . Not coincidentally, spaces play an important role in
the digitization of writing by making the separation of one word from an­
other visually clear, thus contributing to the evolution of the codex book as
it increasingly realized its potential as a medium distinct from speech. Sim­
ilarly, code has characteristics that occur neither in speech nor in writing­
processes that, by exceeding these legacy systems, mark a disjunction.

To explore these characteristics, let us now jump to a high level in the
hierarchy of code and consider object-oriented programming languages,
such as the ubiquitous C++. (I leave out of this discussion the newer lan­
guages of Java and C#, for which similar arguments could be made). C++
commands are written in ASCII and then converted into machine language,
so this high-level programming language, like everything that happens in
the computer, builds on a binary base. Nevertheless, C++ instantiates a
profound shift of perspective from machine language and also from the
procedural languages like FORTRAN and BASIC that preceded it. Whereas
procedural languages conceptualize the program as a flow of modularized
procedures (often diagrammed with a flowchart) that function as com­
mands to the machine, object-oriented languages are modeled after natural
languages and create a syntax using the equivalent of nouns (that is, objects)
and verbs (processes in the system design) .

A significant advantage to this mode of conceptualization, as Bruce Eckel
explains in Thinking in C++, is that it allows programmers to conceptual­
ize the solution in the same terms used to describe the problem. In pro­
cedural languages, by contrast, the problem would be stated in real-world
terms (Eckel's example is "put the grommet in the bin") , whereas the solu­
tion would have to be expressed in terms of behaviors the machine could
execute ("set the bit in the chip that means that the relay will close"; 43).
C++ reduces the conceptual overhead by allowing both the solution and the
problem to be expressed in equivalent terms, with the language's structure

Speech. Writing. Code: Three Worldviews 57

performing the work of translating between machine behaviors and human
perceptions.

The heart of this innovation is allowing the programmer to express her
understanding of the problem by defining classes, or abstract data types,
that have both characteristics (data elements) and behaviors (functionali­
ties) . From a class, a set of objects instantiate the general idea in specific
variations-the nouns referred to above. For example, if a class is defined as
"shape;' then objects in that class might be triangle, circle, square, and so on
(37-38). Moreover, an object contains not only data but also functions that
operate on the data-that is, it contains constraints that define it as a unit,
and it also has encapsulated within it behaviors appropriate to that unit. For
example, each object in "shape" might inherit the capability to be moved, to
be erased, to be made different sizes, and so on, but each object would give
these class characteristics its own interpretation. This method allows max­
imum flexibility in the initial design and in the inevitable revisions, mod­
ifications, and maintenance that large systems demand. The "verbs" then
become the processes through which objects can interact with each other
and the system design.

New objects can be added to a class without requiring that previous ob­
jects be changed, and new classes and metaclasses can also be added. More­
over, new objects can be created through inheritance, using a preexisting ob­
ject as a base and then adding additional behaviors or characteristics. Since
the way the classes are defined in effect describes the problem, the need for
documentation external to the program is reduced; to a much greater extent
than with procedural languages, the program serves as its own description.
Another significant advantage of C++ is its ability to "hide" data and func­
tions within an object, allowing the object to be treated as a unit without
concern for these elements. ''Abstraction is selective ignorance;' Andrew
Koenig and Barbara E. Moo write in Accelerated C++, a potent aphorism
that speaks to the importance in large systems of hiding details until they
need to be known.28 Abstraction (defining classes) , encapsulation (hiding
details within objects and, on a metalevel, within classes) , and inheritance
(deriving new objects by building on preexisting objects) are the strate­
gies that give object-oriented programs their superior flexibility and ease
of design.

We can now see that object -oriented programs achieve their usefulness
principally through the ways they anatomize the problems they are created
to solve-that is, the ways in which they cut up the world. Obviously a great
deal of skill and intuition goes into the selection of the appropriate classes
and objects; the trick is to state the problem so it achieves abstraction in an

58 M A K I N G : L A N G U A G E A N D C O D E

appropriate way. This often requires multiple revisions to get it right, so ease
of revision is crucial.

Some of the strategies C++ uses to achieve its language-like flexibility
illustrate how it makes use of properties that do not appear in speech or
writing and are specific to coding systems. Procedural languages work by
what is called "early binding;' a process in which the compiler (the part of
the code hierarchy that translates higher-level commands into the machine
language) works with the linker to direct a function call (a message calling
for a particular function to be run) to the absolute address of the code to
be executed. At the time of compiling, early binding thus activates a direct
link between the program, compiler, and address, joining these elements
before the program is actually run. C++, by contrast, uses "late binding;' in
which the compiler ensures that the function exists and checks its form for
accuracy, but the actual address of the code is not used until the program
is run.29 Late binding is part of what allows the objects to be self-contained
with minimum interference with other objects.

The point of this rather technical discussion is simple: there is no parallel
to compiling in speech or writing, much less a distinction between compil­
ing and run-time. The closest analogy, perhaps, is the translation of speech
sounds or graphic letter forms into synapses in the human brain, but even
to suggest this analogy risks confusing the production of speech and writing
with its interpretation by a human user. Like speech and writing, computer
behaviors can be interpreted by human users at multiple levels and in di­
verse ways, but this activity comes after (or before) the computer activity of
compiling code and running programs.

Compiling (and interpreting, for which similar arguments can be made)
is part of the complex web of processes, events, and interfaces that medi­
ate between humans and machines, and its structure bespeaks the needs of
both parties involved in the transaction. The importance of compiling (and
interpreting) to digital technologies underscores the fact that new emphases
emerge with code that, although not unknown in speech and writing, oper­
ate in ways specific to networked and programmable media. At the heart of
this difference is the need to mediate between the natural languages native
to human intelligence and the binary code native to intelligent machines. As
a consequence, code implies a partnership between humans and intelligent
machines in which the linguistic practices of each influence and interpene­
trate the other. 30

The evolution of C++ grew from precisely this kind of interpenetration.
C++ is consciously modeled after natural language; once it came into wide
use, it also affected how natural language is understood. We can see this

Speech, Writing, Code: Three Worldviews 59

two-way flow at work in the following observation by Bruce Eckel, in which
he constructs the computer as an extension of the human mind. He writes,
"The genesis of the computer revolution was in a machine. The genesis of
our programming languages thus tends to look like that machine. But the
computer is not §b much a machine as it is a mind amplification tool and
a different kind of expressive medium. As a result, the tools are beginning
to look less like machines and more like parts of our minds, and more like
other expressive mediums like writing, painting, sculpture, animation or
filmmaking. Object-oriented programming is part of this movement toward
the computer as an expressive medium" (Thinking in C++, 35) . As comput­
ers are increasingly understood (and modeled after) "expressive mediums"
like writing, they begin to acquire the familiar and potent capability of writ­
ing not merely to express thought but actively to constitute it. As high-level
computer languages move closer to natural languages, the processes of in­
termediation by which each affects the other accelerate and intensify. Rita
Raley has written on the relation between the spread of Global English and
the interpenetration of programming languages with English syntax, gram­
mar, and lexicon. 31 In addition, the creative writing practices of "code work;'
practiced by such artists as MEZ, Talan Memmott, Alan Sondheim, and oth­
ers' mingle code and English in a pastiche that, by analogy with two natural
languages that similarly intermingle, might be called a creole. 32

The vectors associated with these processes do not all point in the same
direction. As explored in chapter 8, (mis)recognizing visualizations of com­
putational simulations as creatures like us both anthropomorphizes the sim­
ulations and "computationalizes" the humans. Knowing that binary code
underlies complex emergent processes reinforces the view that human con­
sciousness emerges from similar machinic processes, as explored in chapter
7. Anxieties can arise when the operations of the computer are mystified to
the extent that users lose sight of (or never know) how the software actu­
ally works, thus putting themselves at the mercy of predatory companies
like Microsoft, which makes it easy (or inevitable) for users to accept at face
value the metaphors the corporation spoon-feeds them, a concern explored
in chapter 6. These dynamics make unmistakably clear that computers are
no longer merely tools (if they ever were) but are complex systems that in­
creasingly produce the conditions, ideologies, assumptions, and practices
that help to constitute what we call reality.

The operations of "making discrete" highlighted by digital computers
clearly have ideological implications. Indeed, Wendy Hui Kyong Chun goes
so far as to say that software is ideology, instancing Althusser's definition of
ideology as "the representation of the subject's imaginary relationship to his

60 M A K I N G : L A N G U A G E A N D C O D E

or her real conditions of existence:'33 As she points out, desktop metaphors
such as folders, trash cans, and so on create an imaginary relationship of
the user to the actual command core of the machine, that is, to the "real
conditions of existence" that in fact determine the parameters within which
the user's actions can be understood as legible. As is true for other forms
of ideology, the interpolation of the user into the machinic system does not
require his or her conscious recognition of how he or she is being disciplined
by the machine to become a certain kind of subject. As we know, interpola­
tion is most effective when it is largely unconscious.

This conclusion makes abundantly clear why we cannot afford to ignore
code or allow it to remain the exclusive concern of computer programmers
and engineers. Strategies can emerge from a deep understanding of code
that can be used to resist and subvert hegemonic control by megacorpora­
tions; 34 ideological critiques can explore the implications of code for cul­
tural processes, a project already evident in Matthew Fuller's call, seconded
by Matthew Kirschenbaum, for critical software studies;35 readings of sem­
inal literary texts can explore the implications of code for human thought
and agency, among other concerns. Code is not the enemy, any more than
it is the savior. Rather code is increasingly positioned as language's perva­
sive partner. Implicit in the juxtaposition is the intermediation of human
thought and machine intelligence, with all the dangers, possibilities, libera­
tions, and complexities this implies.

Speech, Writing, Code: Three Worldviews 61

